Bayesian control letter associated with non-conformities in medical

Authors

DOI:

https://doi.org/10.21501/21454086.3362

Keywords:

Control chart, Delphi method, Bayesian statistics, Statistical processes control, Elicitation, Ishikawa, A priori distribution, A posteriori probability distribution, Variable confidence interval, R statistical software.

Abstract

In this work, using a commonly used industrial tool, such as control charts, was explored in a purely social environment, specifically in health. It was intended to present a method to introduce this easy-to-use tools-based concept and implementation. Based on the technique proposed by Ishikawa [1] as the first instance of the process, it is followed by the implementation of the Delphi methodology in two rounds and ending with a third round of Delphi, using the freehand elicitation method. This process turned out to be novel due to the estimation of the Bayesian control limits, the estimation of the a priori distribution by freehand, consulting experts, and the determination of a posteriori predictive distribution. These
allow the permanent updating of the control limits in a social process, as far as we know, not used in the literature. This result will allow the generation of early alerts to control the process, either due to the unexpected increase in non-conformities or because the innovations are surprisingly less than expected according to the posterior probability distribution.

Downloads

Download data is not yet available.

Author Biographies

Carlos Alberto Hurtado Castaño, Politécnico Colombiano Jaime Isaza Cadavid

M. Sc. en Estadística. Politécnico Colombiano Jaime Isaza Cadavid. Facultad de Ciencias Básicas, Sociales y Humanas. Medellín, Colombia

Stiven Villada-Gil, Politécnico Colombiano Jaime Isaza Cadavid

***Ph.D en Ingeniería. Politécnico Colombiano Jaime Isaza Cadavid. Facultad de Ciencias Básicas, Sociales y Humanas. Medellín, Colombia. svillada@elpoli.edu.co

Juan Carlos Correa Morales, Universidad Nacional de Colombia sede Medellín

Ph.D en Estadística. Universidad Nacional de Colombia sede Medellín. Escuela de Estadística

References

K. Ishikawa, Guide to Quality Control. Tokio, Japan: Asian Productivity Organization, 1986.

W. Woodall and M. Mahmoud, “The Inertial Properties of Quality Control Charts,” Technometrics, vol. 46, no. 47, pp. 425-436, 2005, doi: https://doi.org/10.1198/004017005000000256

J. Juran y F. Gryna, Manual de control de calidad. Madrid, España: McGraw-Hill, 1993.

S. Limaye, C. Mastrangelo and D. Zerr, “A case study in monitoring hospital associated infections with count control charts,” Quality Engineering, vol. 20, no. 4, pp. 404-413, 2008, doi: https://doi.org/10.1080/08982110802334120

W. Chiu and M. Leung, “A new Bayesian approach to quality control charts,” Metrika, vol. 2, no. 1, pp. 243-253, 1980, doi: https://doi.org/10.1007/BF01893602

R. Walpole, Probabilidad y Estadística para Ingenieros. México D.F., México: Prentice – Hall Hispanoamerica S.A., 1999.

W. Deming, Out of the Crisis. Cambridge, Inglaterra: M.I.T. Press Cambridge M.A., 1986.

W. Shewhart, “Quality control charts”. Bell System Technical Journal, vol. 5, no. 4, pp. 593-603, 1926. https://doi.org/ 10.1002/j.1538-7305.1926.tb00125.x

H. Gutiérrez, “Cartas de Control Bayesianas para Atributos y el Tamaño de Subgrupo Grande en la Carta p,” Revista Colombiana de Estadística, vol. 29, no. 2, pp. 163-180, 2006.

https://revistas.unal.edu.co/index.php/estad/article/view/29180

B. Colosimo, and E. del Castillo, Bayesian Process Monitoring - Control and Optimization. Boca Raton, Estados Unidos: Chapman and Hall/CRC-Taylor and Francis Group, 2007.

P. Tsiamyrtzis, A Bayesian Approach to Quality Control Problems, PhD thesis, Faculty of the Graduate School, University of Minesota, 2000.

Y. Zhijian, “Multivariate Bayesian Process Control”, PhD thesis, Mechanical and Industrial Engineering, University of Toronto, 2008.

P. Tsiamyrtzis, and D. Hawkins, “A Bayesian Scheme to Detect Changes in the Mean of a Short-Run Process,” Technometrics, vol. 47, no. 4, pp. 446456, 2005, doi: https://doi.org/10.1198/004017005000000346

J. Bernardo and A. Smith, Bayesian Theory. New York, United States: Wiley and Sons, 1994.

R. Marcellus, “Bayesian Statistical Process Control,” Quality Engineering, vol. 20, no. 1, pp. 113-127, 2008, doi: https://doi.org/10.1080/08982110701509046

J. Marin, and C. Robert, Bayesian Core. A Practical Approach to Computational Bayesian Statistics. New York, United States: Springer, 2007.

R. Khatiwada, and A. Sthapit, “An application of bayesian method in packaged food quality control,” Nepal Journal of Science and Technology, vol. 9, pp. 41-48, 2008, doi: https://doi.org/10.3126/njst.v9i0.3163

M. Grime, and G. Wright, “Delphi Method,” Wiley StatsRef: Statistics Reference Online, 2016, doi: https://doi.org/10.1002/9781118445112.stat07879

R. Clement, and R. Winkler, “Combining Probability Distribution from Experts in Risk Analysis,” Risk Analysis, vol. 19, no. 2, pp. 187-203, 1999. https://faculty.fuqua.duke.edu/~clemen/bio/Published%20Papers/28.CombiningDistributions-Clemen&Winkler-RA-99.pdf

R. Clement, and R. Winkler, “Combining Economic Forecasts,” Journal of Business & Economic Statistics, vol. 4, no. 1, pp. 39-46, 1986, doi: https://doi.org/10.2307/2583199

T. Benaglia, D. Chauveau, D. Hunter and D. Young, “Mixtools: An R Package for Analyzing Finite Mixture Models,” Journal of Statiscal Software, vol. 32, no. 6, pp. 1-29, 2009.

R Core Team, “R: A Language and Environment for Statistical Computing”. Vienna, Austria: R Foundation for Statistical Computing, 2013.

Published

2021-03-16

How to Cite

Hurtado Castaño, C. A., Villada-Gil, S., & Correa Morales, J. C. (2021). Bayesian control letter associated with non-conformities in medical. Lámpsakos, (24), 23–32. https://doi.org/10.21501/21454086.3362

Issue

Section

Articles of scientific and technological research