Numerical analysis of the over-expanded flow in the experimental conical nozzle ULA-1B out of design
DOI:
https://doi.org/10.21501/21454086.3836Keywords:
Oblique shock, Fluctuation, Over-expanded flow, Throat length, RANS model, Turbulence model, Flow pattern, Flow separation, Simulation, Conical nozzle.Abstract
In supersonic nozzles, different flow patterns occur and their behavior is influenced by the geometries of the internal surfaces of the walls. In the present work, the over-expanded flow field is simulated in 2D in the experimental ULA-1B conical nozzle out of design, for two cases of throat lengths:Lg =15 mm and Lg= 1 mm; in order to analyze the field of Mach number, pressure and temperature. The ANSYS-Fluent code was used and the RANS model was applied; the governing equations: conservation of mass, momentum, energy, and state; as well as the Menter turbulence model and the Sutherland equation for the viscosity as a function of temperature. In the longest throat section, the results showed oblique shocks, speed, pressure and temperature fluctuations; for the shorter throat there were no fluctuations; for both cases, the flow in the divergent presented speed peaks in the range of 2,5 - 3 Mach. It is concluded that, for the shorter throat length, the flow accelerates without disturbances in said section; in the divergent there is a supersonic jet and flow separation.Downloads
References
G. P. Sutton and O. Biblarz, Rocket propulsion elements, 9th ed., New York, USA: John Wiley & Sons, 2016.
J. D. Anderson, Fundamentals of aerodynamics, 6th ed., New York, USA: McGraw-Hill, 2017.
T. V. Karman, “The fundamentals of the statistical theory of turbulence”, Journal of the Aeronautical Sciences, vol. 4, no. 4, pp. 131–138, 1937, doi: https://doi.org/10.2514/8.350
H. Schlichting and G. Klaus, Boundary-layer theory, 9th ed., Berling Heidelberg, Germany: Springer-Verlag, 2017.
P. Krehl and S. Engemann, “August Toepler —the first who visualized shock waves”, Shock Waves, vol. 5, no. 1, pp. 1-18, 1995, doi: https://doi.org/10.1007/BF02425031
G. S. Settles, “Toma ultrarrápida de imágenes de ondas de choque, explosiones y disparos”. Revista Investigación y Ciencia, no. 356, pp. 74-83, may, 2006, http://www.investigacionyciencia.es/revistas/investigacion-y-ciencia/genes-de-la-longevidad-419/toma-ultrarrpida-de-imgenes-de-ondas-de-choque-explosiones-y-disparos-5828
J. Blazek, Computational fluid dynamics: principles and applications, 3rd ed., Oxford, United Kingdom: Butterworth-Heinemann, 2015.
B. Andersson, et al., Computational Fluid Dynamics, Engineers. Cambridge University Press, 2012.
V. Marcano, et al., “Progresos alcanzados en el proyecto universitario cohete sonda ULA”, Revista Universidad, Ciencia y Tecnología, vol. 13, no. 53, pp. 305–316, 2009, http://uct.unexpo.edu.ve/index.php/uct/article/view/109
L. Lacruz, M. A. Parco, R. Santos, C. Torres, J. Ferreira y P. Benítez, “Análisis experimental de las oscilaciones de presión interna en un motor de combustible sólido para cohete sonda”, Revista Ciencia y Tecnología, vol. 37, no. 2, pp. 81–88, 2016, http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/7443
M. A. Parco, “Análisis experimental de temperaturas en la tobera de un motor de cohete de combustible sólido”. Trabajo de Grado de Maestría, dirigido por P. R. Benítez, Facultad de Ingeniería, Universidad de Los Andes, Mérida, Venezuela, 2014.
S. L. Tolentino, J. Ferreira, M. A. Parco, L. Lacruz y V. Marcano, “Simulación numérica del flujo sobre-expandido en la tobera cónica experimental ULA-1A XP”, Revista Universidad, Ciencia y Tecnología, vol. 21, no. 84, pp. 126–133, 2017, http://www.uct.unexpo.edu.ve/index.php/uct/article/view/803
S. L. Tolentino, M. A. Parco, S. Caraballo, L. Lacruz, V. Marcano, J. Ferreira y J. Mírez, “Análisis numérico del comportamiento del flujo en la sección de la garganta de una tobera cónica experimental”, Revista Enfoque UTE, vol. 12, no. 1, pp. 12-28, 2021, doi: https://doi.org/10.2909/enfoqueute.676
S. L. Tolentino, y J. Mírez, “Análisis numérico del flujo sobrexpandido en la tobera cónica experimental ULA-2 fuera de diseño”, Lámpsakos, no 24, pp. 33-47, 2020, doi: https://doi.org/10.21501/214540863707
C. A. Hunter, “Experimental, theoretical, and computational investigation of separated nozzle flows”, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference exhibit, Cleveland, OH, July 1998. Disponible en: https://doi.org/10.2514/6.1998-3107
S. Verma, M. Chidambaranatathan and A. Hadjadj, “Analysis of shock unsteadiness in a supersonic over-expanded planar nozzle”, European Journal of Mechanics/B Fluids, vol. 68, pp. 55-65, 2018, doi: https://doi.org/10.1016/j.euromechflu.2017.11.005
E. Martelli, P. P. Ciottoli, L. Saccoccio, F. Nasuti, M. Valorani and M. Bernardini, “Characterization of unsteadiness in an overexpanded planar nozzle”, AIAA Journal, vol. 57, no. 1, pp. 239-251, 2019, doi: https://doi.org/10.2514/1.J057162
P. P. Nair, A. Suryan and H. Dong, “Computational study on reducing flow asymmetry in over-expanded planar nozzle by incorporating double divergence”, Aerospace Science and Technology, vol. 100, pp. 1-18, 2020, doi: https://doi.org/10.1016/j.ast.2020.105790
ANSYS, “Ansys Fluent 2019 R1: Theory guide”, [Online]. Available: https://go-pdf.online/out/2BE079D/ansys-fluent-theory-guide.pdf, [consultado el 5 de julio de 2020].
F. White, Fluids Mechanics, 8th ed., New York, USA: McGraw-Hill Education, 2016.
J. Anderson, Hipersonic and high temperature gas dynamics, Virginia, USA: AIAA, 2019.
W. Sutherland, “The viscosity of gases and molecular force”, Philosophical Magazine series 5, vol. 36, no. 223, pp. 507–531, 1893, doi: https://doi.org/10.1080/14786449308620508
F. R. Menter, “Two equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, vol. 32, no. 8, pp. 1598–1605, 1994, doi: https://doi.org/10.2514/3.12149
S. L. Tolentino, “Evaluation of turbulence models for the air flow in a planar nozzle”, Revista INGENIUS, no. 22, pp. 25–37, 2019, doi: https://doi.org/10.17163/ings.n22.2019.03
S. L. Tolentino, “Evaluación de modelos de turbulencia para el flujo de aire en un difusor transónico”, Revista Politécnica, vol. 45, no. 1, pp. 25-38, 2020, doi: https://doi.org/10.33333/rp.vol45n1.03
Y. A. Cengel and J. M. Cimbala, Fluid mechanics: Fundamentals and applications, 4th ed., New York, USA: McGraw-Hill, 2017.
C. Génin, A. Gernoth and R. Stark, “Experimental and numerical study of heat flux in dual bell nozzles”, Journal of Propulsion and Power, vol. 29, no. 1, pp. 21-26, 2013, doi: https://doi.org/10.2514/1.B34479
H. Ding, C. Wang and G. Wang, “Transient conjugate heat transfer in critical flow nozzle”, International Journal of Heat and Mass transfer, vol. 104, pp. 930-942, 2017, doi: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.021
R. Arora, and R. Vaidyanathan, “Experimental investigation of flow through planar double divergent nozzles”. Acta Astronautica, vol. 112, pp. 200-216, 2015, doi: https://doi.org/10.1016/j.actaastro.2015.03.020
B. Zebiri, A. Piquet, and A. Hadjadj, “Analysis of shock-wave unsteadiness in conical supersonic nozzle”, Aerospace Science and Technology, vol. 105, pp. 1-15, 2020, doi: https://doi.org/10.1016/j.ast.2020.106060
J. Östlund and B. Muhammed, “Supersonic flow separation with application to rocket engine nozzles”, ASME, Applied Mechanics Reviews, vol. 58, no. 3, pp. 143-177, 2005, doi: https://doi.org/10.1115/1.1894402
S. L. Tolentino, R. Nakka, S. Caraballo y J. Mírez, “Numerical simulation of the flow under-expanded flow in the experimental conical nozzle helios-x”, Revista INGENIUS, no. 25, pp. 81-93, 2021, doi: https://doi.org/10.17163/ings.n25.2021.08
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Lámpsakos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
In accordance with national and international copyrights, as well as publishing policies of "Fundación Universitaria Luis Amigó" and its Journal "Lámpsakos" (indexed with ISSN : 2145-4086), I (we ) hereby manifest:1. The desire to participate as writers and submit to the rules established by the magazine publishers.
2. The commitment not to withdraw the manuscript until the journal finishes the editing process of the ongoing issue.
3. That article is original and unpublished and has not been nominated or submitted together in another magazine; therefore, the rights of the article in evaluation have not been assigned in advance and they do not weigh any lien or limitation for use.
4. The absence of conflict of interest with commercial institution or association of any kind
5. The incorporation of the quotes and references from other authors, tending to avoid plagiarism. Accordingly, the author affirms that the paper being published do not violate copyright, intellectual property or privacy rights of third parties. Morover, if necessary there is a way of demonstrating the respective permits original copyright to the aspects or elements taken from other documents such as texts of more than 500 words, tables, graphs, among others. In the event of any claim or action by a third party regarding copyright on the article, the author (s) will assume full responsibility and come out in defense of the rights herein assigned. Therefore, for all purposes, the Journal "Lámpsakos" of the "Fundación Universitaria Luis Amigó" acts as a third party in good faith.
6. In the event of the publication of the article, the authors free of charge and on an exclusive basis the integrity of the economic rights and the right to print, reprint and reproduction in any form and medium, without any limitation as to territory is concerned, in favor of the Journal "Lámpsakos" of the "Fundación Universitaria Luis Amigó".