Adaptation of information theory to the linear propagation regime of a next-generation DWDM optical network

Authors

  • Gustavo Adolfo Gómez Agredo UNIVERSIDAD DEL CAUCA
  • José Giovanny López Perafán

DOI:

https://doi.org/10.21501/21454086.3127

Keywords:

Information theory, Optical networks, DWDM, FSAN, Spectral efficiency, Bandwidth, Channel capacity.

Abstract

In the development of the present article, the information theory of Shannon is adapted and equation is proposed for the measurement of the spectral efficiency in order to be applied to the new optical network environments NG-PON (Next Generation Passive Optical Network) proposed by the FSAN task group (Full Service Access Network) of ITU-T. This development will allow to control certain parameters and configuration characteristics of the systems based on optical fiber to achieve improvements in the spectral efficiency, high access capacities and large bandwidths; allowing to understand in a clearer way, the changes that the DWDM network architectures (Dense Wavelength Division Multiplexing) have suffered in recent years as a vision of the future of telecommunications

Downloads

Download data is not yet available.

Author Biography

Gustavo Adolfo Gómez Agredo, UNIVERSIDAD DEL CAUCA

FACULTA DE INGENIERIA EN ELECTRONICA Y TELECOMUNICACIONES, MsC, DOCENTE INVESTIGADOR.

References

S. D. N., UIT, “Visión general de las redes de próxima generación”, Recommendation UIT-T Y. 2001, Ginebra, pp. 2, 2004.

FSAN. Full Service Access Network, “comité desarrollador UIT”, Página Web Retrieved from https://www.fsan.org/.

Rong Zhao et al., “FTTH Handbook”, Fibre to the Home Council Europe, Wettelijk Depot, 2018.

S. D. N., UIT, “10-Gigabit-capable passive optical network (XG-PON) systems: Definitions, abbreviations and acronyms”, Recommendation UIT-T. G. 987, Ginebra, 2012.

S. D. N., UIT, “10-Gigabit-capable passive optical networks (XG-PON): General requirements”, Recommendation UIT-T. G. 987.1, Ginebra, 2016.

S. D. N., UIT, “10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification”, Recommendation UIT-T. G 987.2, Ginebra, 2016.

S. D. N., UIT, “10-Gigabit-capable passive optical networks (XG-PON): Transmission convergence (TC) layer specification”, Recommendation UIT-T. G. 987.3, Ginebra, 2014.

S. D. N., UIT, “10 Gigabit-capable passive optical networks (XG-PON): Reach extensión”, Recommendation UIT-T. G 987.4, Ginebra, 2012.

S. D. N., UIT, “10-Gigabit-capable symmetric passive optical network (XGS-PON)”, Recommendation UIT-T. G. 9807.1, Ginebra, 2016.

S. D. N., UIT, “10 Gigabit-capable passive optical networks (XG(S)-PON): Reach extensión”, Recommendation UIT-T. G. 9807.2, Ginebra, 2017.

S. D. N., UIT, “40-Gigabit-capable passive optical networks (NG-PON2): General requirements”, Recommendation UIT-T. G 989.1, Ginebra, 2013.

S. D. N., UIT, “40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification”, Recommendation UIT-T. G 989.2, Ginebra, 2019.

S. D. N., UIT, “40-Gigabit-capable passive optical networks (NG-PON2): Transmission convergence layer specification”, Recommendation UIT-T. G 989.3, Ginebra, 2015.

C. E. Shannon, “A mathematical theory of communication”, The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, 1948. Available: http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

H. Simon, Sistemas de Comunicación, 2da edición. Madrid, España: Limusa Wiley, 2001.

J. G. Proakis, and M. Salehi, Digital communications. Fifth Edition. New York: McGraw-Hill, 2007.

R. G. Gallager, Information theory and reliable communication. New York: Wiley, 1968.

E. Desurvire, Classical and quantum information theory: an introduction for the telecom scientist. Cambridge: University Press, 2009.

J. M. Kahn, K. P. Ho, “Ultimate spectral efficiency limits in DWDM systems”, In OptoElectronics and Communications Conference, 2002, pp. 8-12.

K. P. Ho, J. M. Kahn, ”Channel capacity of WDM systems using constant-intensity modulation formats”, In Optical Fiber Communication Conference (p. ThGG85), Optical Society of America, March, 2002.

A. Mecozzi, M. Shtaif, “On the capacity of intensity modulated systems using optical amplifiers”, IEEE Photonics Technology Letters, 13(9), 1029-1031, 2001.

E. E. Narimanov, P. Mitra, “The channel capacity of a fiber optics communication system: Perturbation theory”, Journal of lightwave technology, 20(3), 530, 2002.

P. P. Mitra, J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications”, Nature, 411(6841), 1027. 2001.

I. Brener et al., “Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO 3 phase conjugator and Raman amplification”, In Optical Fiber Communication Conference, 2000. doi: 10.1109/OFC.2000.869479

P. J. Winzer, and R. J. Essiambre, “Advanced optical modulation formats”, Proceedings of the IEEE, vol. 94, no. 5, pp. 952-985, 2006. doi: 10.1109/JPROC.2006.873438

G. Gómez, “Mejora de la Eficiencia Espectral en redes DWDM a 40Gbps a través de los formatos de modulación avanzados DPSK y DQPSK”, (Tesis de maestría), Universidad del Cauca, 2019.

Published

2019-11-26

How to Cite

Gómez Agredo, G. A., & López Perafán, J. G. (2019). Adaptation of information theory to the linear propagation regime of a next-generation DWDM optical network. Lámpsakos, (22), 27–36. https://doi.org/10.21501/21454086.3127

Issue

Section

Articles of scientific and technological research