Analysis of the effects of the channel release from the dam on the saline stratification of its movement to the cartagena bay

Authors

  • Jessica Patricia Alvarez Carval Fundación Universitaria Tecnologico Comfenalco
  • Cesar Augusto Tovio Gracia

DOI:

https://doi.org/10.21501/21454086.2950

Keywords:

Dam, Estuary, Hydrodynamics, Numerical modeling, Salinity, Density, Delft3D, Stratification, Simulation, Cartagena Bay

Abstract

Estuaries are water creations that represent the transition from the river to the sea, therefore, they have characteristics of both from the river and the sea as well, an example of this type of ecosystem is the channel’s outlet from the dam to the Bay of Cartagena, this caused changes in the environment of the bay modifying the hydrodynamics (salinity, flowing and density patterns). Despite the research that has already been carried out in the area, those specific researches have not studied the salinity and density patterns in detail. That is why these elements, salinity and density are the object of this research work, through the simulation and validation of parameters that influence the saline stratification of the area, through the Delft3D numerical model, which focuses on this type of environment; that at the same time, characterizes the type of stratification of the saline interference in the area under the simulated conditions.

Downloads

Download data is not yet available.

References

D. Prichard, “What is an estuary?: physical viewpoint in: Estuaries” Amerincan Association for the Advancement of Science, pp. 3-5, 1967.

S. Farreras, Hidrodinámica de Lagunas Costeras, México: Centro de Investigación Científica y de Educación Superior de Ensenada, 2006.

K. Dyer, Estuaries, a physical introduction, West Sussex: WILEY, 1997.

H. Savenije, Salinity and Tides in Alluvial Estuaries, Amsterdam: ELSERVIER, 2005.

N. Yin Yip, D. Brogioli, H. V. M. Hamelers and K. Njimejer, “Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects”, Enviromental Science & Technology, vol. 50, no. 22, pp. 12072-12094. DOI: 10.1021/acs.est.6b03448

J. Pagliardini, G. M., T. Gutiérrez, D. Zapata, A. Jurado, J. Garay and G. Verenette, “Síntesis del proyecto Bahía de Cartagena”, Boletín Científico CIOH, vol. 4, no. 4, pp. 49-110, 1982. Recuperado de http://cecoldodigital.dimar.mil.co/92/1/dimarcioh_1982_boletincioh_04_49-110.pdf

S. Lonin, “Circulación de las aguas y transporte de contaminantes en la Bahía de Cartagena”, Boletín Científico CIOH, no. 16, pp. 25-56, 1995. Recuperado de http://cecoldodigital.dimar.mil.co/150/1/dimarcioh_1995_boletincioh_16_25-56.pdf

S. Lonin y L. Giraldo, “Influencia de los efectos térmicos en la circulación de la bahía interna de Cartagena”, Boletín Científico CIOH, no. 17, pp. 47-56, 1997. Recuperado de http://cecoldodigital.dimar.mil.co/157/1/dimarcioh_1996_boletincioh_17_47-56.pdf

A. De Lisa, “Estudio de la hidrodinámica y renovación de las aguas del caño del Zapatero”, trabajo de grado, Escuela Naval de Cadetes “Almirante Padilla” (ENAP), 2003.

J. G. Rueda Bayona, L. J. Otero Díaz, y J. O Pierini, “Caracterización hidrodinámica en un estuario tropical de Suramérica con régimen micromareal mixto”, Boletín Científico CIOH, vol. 31, pp. 159-174, 2013.

S. Lonin, C. Parra Llanos, C. A. Andrade Amaya y Y. F. Thomas, “Patrones de pluma turbia del canal del Dique en la bahía de Cartagena”, Boletín Científico CIOH, no. 22, pp. 77-89, 2004.

Deltares, Delft3D-FLOW, User Manual, Netherland: Deltares, 2014.

L. Marriaga y J. Echeverry, “Análisis de la evolución del fondo marino y cambios en la línea de costa, en el área de influencia de la desembocadura del Canal del Dique”, Boletín Científico CIOH, pp. 158-178, 2011.

A. Gómez Giraldo, A. F. Osorio Arias, F. M. Toro, J. D. Osorio Cano y O. A. Álvarez, “Efecto del cambio de los caudales del Canal del Dique sobre el patrón de transporte horizontal en la bahía de Barbacoas”, Boletín Científico CIOH, no. 27, pp. 90-111, 2009.

C. H. Grisales López, J. A. Salgado Mesa y R. J. Morales Babra, “Proceso de intercambio de masas de agua de la bahía de Cartagena (Caribe colombiano) basado en la medición de parámetros oceanográficos”, Boletín Científico CIOH, no. 32, pp. 47-70, 2014.

R. Morales y M. Mestres, “Efectos de la descarga estacional del Canal del Dique en el mecanismo de intercambio de aguas de una bahía semicerrada y micromareal: Bahía de Cartagena, Colombia”, Boletín Científico CIOH, pp. 53-74, 2012. DOI: https://doi.org/10.26640/22159045.243

G. S. Stelling, On the construction of computational methods for shallow water flow problems, Holanda: Institutional Repository, 1983.

J. C. Eijkeren, B. J. de Haan, G. S. Stelling and T. L. van Stijn, “Notes on Numerical Fluid Mechanics, Linear upwind biased methods”, Numerical Methods for Advection-Diffusion Problems, vol. 45, pp. 55-91, 1993.

R. Morales, “Clasificación e identificación de las componentes de marea del Caribe colombiano”, Boletín Científico CIOH, no. 22, pp. 105-114, 2004.

V. Ramos, R. Caraballo and J. V. Ringwood, “Application of the actuator disc theory of Delft3D-FLOW to model far-field hydrodynamic impacts of tidal turbines”, Renewable Energy, vol. 139, pp. 1320-1335, 2019. DOI: https://doi.org/10.1016/j.renene.2019.02.094

S. Waldman, S. Bastón, R. Nemalidinne, A. Chatzirodou, V. Venugopal and J. Side, “Implementation of tidal turbines in MIKE 3 and Delft3D models of Pentland Firth & Orkney Waters”, Ocen & Coastal Management, vol. 147, pp. 21-36, 2017. DOI: https://doi.org/10.1016/j.ocecoaman.2017.04.015

A. Rhaman and V. Venugopal, “Parametric analysis of three dimensional flow models applied to tidal energy sites in Scotland” Estuarine, Coastal and Shelf Science, vol. 189, pp. 17-32, 2017. DOI: https://doi.org/10.1016/j.ecss.2017.02.027

M. Des, M. de Castro, M. Sousa, J. M. Dias and M. Gómez-Gesteira, “Hydrodynamics of river plume intrusion into an adjacent estuary: The Minho River and Ria de Vigo”, Journal of Marine Systems, vol. 189, pp. 87-97, 2019. DOI: https://doi.org/10.1016/j.jmarsys.2018.10.003

W. van Gerwen, B. Borsje, J. Damveld and S. Hulscher, “Modelling the effect of suspended load transport and tidal asymmetry on the equilibrium tidal sand wave height”, Coastal Engineering, vol. 136, pp. 56-64, 2018. DOI: https://doi.org/10.1016/j.coastaleng.2018.01.006

K. Hu, Q. Chen, H. Wang, E. K. Hartig and P. M. Orton, “Numerical modeling of salt marsh morphological change induced by Hurricane Sandy”, Coastal Engineering, vol. 132, pp. 63-81, 2018. DOI: https://www.sciencedirect.com/science/article/pii/S0378383917300327

U. Besr, M. Van de Wengen, J. Dijkstra, P.W.J.M. Willemen, B. W. Borsje and D. J. A. Roelvink, “Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics”, Environmental Modelling & Software, vol. 109, pp. 152-166, 2018.

Y. Wan and L. Wang, “Numerical investigation of the factors influencing the vertical profiles of current, salinity and SSC within a turbidity maximum zone” International Journal of Sediment Research, vol. 32, no. 1, pp. 20-33, 2016. DOI: https://doi.org/10.1016/j.ijsrc.2016.07.003

C. I. Vargas, N. Vaz and J. M. Dias, “An evaluation of climate change effects in estuarine salinity patterns: Application to Rias de Aveiro shallow water system”, Estuarine, Coastal and Shelf Science, vol. 189, pp. 33-45, 2017. DOI: https://doi.org/10.1016/j.ecss.2017.03.001

S. Orseau, S. Lesourd, N. Huybrechts and A. Gardel, “Hydro-sedimentary processes of a shallow tropical estuary under Amazon influence. The Mahury Estuary, French Guiana”, Estuarine, Coastal and Shelf Science, vol. 189, pp 252-266, 2017. DOI: https://doi.org/10.1016/j.ecss.2017.01.011

Published

2019-07-05

How to Cite

Alvarez Carval, J. P., & Tovio Gracia, C. A. (2019). Analysis of the effects of the channel release from the dam on the saline stratification of its movement to the cartagena bay. Lámpsakos, 1(21), 51–64. https://doi.org/10.21501/21454086.2950

Issue

Section

Articles of scientific and technological research