Trace Alignment Algorithm Implementation Using Parallel Programming Techniques

Authors

  • Marlis Fulgueira-Camilo Centro de Investigación Tecnológica Integrada La Habana, Cuba
  • Ernesto Insúa-Suárez Centro de Investigación Tecnológica Integrada La Habana, Cuba
  • Humberto Díaz-Pando

DOI:

https://doi.org/10.21501/21454086.1722

Keywords:

CUDA, OpenCL, OpenMP, Process Mining, Trace Alignment

Abstract

The article refers to an algorithm in the field of mining processes, Trace Alignment, aimed at detecting anomalies in a sequence of patterns and identify common patterns. The analysis of the traces generated by the business process may take considerable time, given that a large part of the process, today, are computerized. The algorithm in question is parallelized using the shared memory paradigm, specifically OpenMP, CUDA and OpenCL. The parallel proposed design has two stages: a first construction where the similarity matrix and a second where pairs or sets of traces at the same time is aligned. The results indicate that, with the proposed design, the best times are obtained using OpenMP

Downloads

Download data is not yet available.

References

W. Van Der Aalst, Process mining: discovery, conformance and enhancement of business processes: Springer Science & Business Media, 2011. ISBN: 978-3-642-19344-6

A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros, "Process mining with the heuristics miner-algorithm," Technische Universiteit Eindhoven, Tech. Rep. WP, vol. 166, pp. 1-34, 2006. DOI: 10.1.1.118.8288

R. J. C. Bose and W. M. van der Aalst, "Process diagnostics using trace alignment: opportunities, issues, and challenges," Information Systems, vol. 37, pp. 117-141, 2011. DOI: 0.1016/j.is.2011.08.003

N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course 1st ed.: MIT Press, 1992. ISBN: 0-262-03171-X

Z. Du, Z. Yin, and D. Bader, "A tile-based parallel Viterbi algorithm for biological sequence alignment on GPU with CUDA," presented at the Proc. of the IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW), Atlanta, GA, 2010. DOI: 10.1109/IPDPSW.2010.5470903

T. Siriwardena and D. Ranasinghe, "Accelerating global sequence alignment using CUDA compatible multi-core GPU," in Information and Automation for Sustainability (ICIAFs), 2010 5th International Conference on, Colombo, 2010, pp. 201-206. DOI: 10.1109/ICIAFS.2010.5715660

L. Hasan, M. Kentie, and Z. Al-Ars, "GPU-accelerated protein sequence alignment," in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 2011, pp. 2442-2446. ISBN: 978-1-4244-4121-1

M. R. Babu, "Parallelized hierarchical expected matching probability for multiple sequence alignment," Journal of Theoretical & Applied Information Technology, vol. 64, 2014. URL: http://www.jatit.org/volumes/Vol64No2/10Vol64No2.pdf

A. E. C. González, "La métrica de Levenshtein," Revista de Ciencias Básicas UJAT, vol. 7, pp. 35-43, 2008. URL: www.publicaciones.ujat.mx/publicaciones/revista_dacb/Acervo/v7n2OL/v7n2.pdf#page=37

D. Shrimankar and S. Sathe, "Performance Analysis of OpenMP and MPI for NW algorithm on multicore architecture," International Journal of Advanced Studies in Computers, Science and Engineering, vol. 3, p. 23, 2014. URL: http://www.ijascse.org/volume-3-issue-6/OpenMp.pdf

Sharma C and V. A.K. (2014, Parallel Approaches in Multiple Sequence Alignments. International Journal of Advanced Research in Computer Science and Software Engineering 4(2). URL: http://www.ijarcsse.com/docs/papers/Special_Issue/icadet2014/Lord_35.pdf

A. Y. Zomaya, Parallel computing for bioinformatics and computational biology: models, enabling technologies, and case studies vol. 55: John Wiley & Sons, 2006. ISBN: 978-0-471-71848-2 ISBN: 978-1-4613-6601-0

D. E. Lenoski and W.-D. Weber, Scalable shared-memory multiprocessing: Elsevier, 2014. ISBN: 978-1-4613-6601-0

N. Matloff, Programming on Parallel Machines University of California: Davis, 2012.URL: http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

A. OpenMP, "The OpenMP API specification for parallel programming," http://openmp.org, 2010., 2010.

B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable shared memory parallel programming vol. 10: MIT press, 2008. ISBN: 978-0-262-53302-7

OpenMP and A. R. Board, "OpenMP Application Program Interface", 3.0 ed., 2008. URL: http://www.openmp.org/mp-cuments/spec30.pdf

M. Sato, "OpenMP: parallel programming API for shared memory multiprocessors and on-chip multiprocessors," in Proceedings of the 15th international symposium on System Synthesis, 2002, pp. 109-111. ISBN: 1-58113-576-9

S. Cook, CUDA programming: a developer's guide to parallel computing with GPUs: Newnes, 2012. ISBN: 978-0124159334

R. Farber, CUDA application design and development: Elsevier, 2011. ISBN: 978-0-12-388426-8

J. Sanders and E. Kandrot. (2010). CUDA by example: an introduction to general-purpose GPU programming. ISBN: 978-0131387683

AMD, Accelerated Parallel Processing OpenCL Programming Guide: AMD, 2012.URL: http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf

B. e. R. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heterogeneous Computing with OpenCL, 2nd ed.: Morgan Kaufmann, 2013. ISBN: 970-0-12-405894-1

M. Scarpino, "Opencl in Action: How to Accelerate Graphics and Computation. NY," ed: USA: Manning, 2012. ISBN: 9781617290176

P. S. Pacheco, An Introduction to Parallel Programming, 1st ed.: Morgan Kaufmann, 2011. ISBN: 0080921442

M. Abd-El-Barr and H. El-Rewini, Fundamentals of Computer Organization and Architecture 1st ed. New Jersey, USA: Wiley-Interscience, 2004. ISBN: 0-471-4674-1-3

F. Gebali, Algorithms and Parallel Computing, 1st ed.: Wiley, 2011. ISBN: 978-0-470-90210-3

A. Grama, A. Gupta, G. Karyspis, and V. Kumar, Introduction to Parallel Computing, 2nd ed.: Addison Wesley, 2003. ISBN: 978-0201648652

Published

2016-03-30

How to Cite

Fulgueira-Camilo, M., Insúa-Suárez, E., & Díaz-Pando, H. (2016). Trace Alignment Algorithm Implementation Using Parallel Programming Techniques. Lámpsakos, (15), 11–21. https://doi.org/10.21501/21454086.1722

Issue

Section

Articles of scientific and technological research