Desarrollo de un modelo predictivo de las propiedades mecánicas del suelo usando redes neuronales artificiales
DOI:
https://doi.org/10.21501/21454086.4042Palabras clave:
Redes neuronales, Perceptrones multicapa, Neuronas prealimentadas;, Propiedades del suelo, Humedad del suelo, Métodos de predicción, Modelos de predicción, Inteligencia artificial, Carreteras, Ingeniería civilResumen
Determinar las propiedades del suelo es una tarea necesaria pero costosa en el diseño de pavimentos, por dicha razón, en este estudio se desarrollaron cuatro redes neuronales artificiales (RNA) basadas en perceptrón multicapa para predecir la máxima densidad seca (MDD), el óptimo contenido de humedad (OMC), el valor de la relación de soporte de California (CBR) al 95% de la MDD y el CBR al 100% de la MDD, respectivamente. El método considera un dataset con 285 ejemplos, definición de arquitectura base mediante optimización bayesiana y validación cruzada, modificación de la arquitectura
y los hiperparámetros para mejorar el desempeño. Las RNA se entrenaron considerando 3000 épocas, función ReLU,
tasa de aprendizaje, dropout; fueron evaluadas con el coeficiente de correlación (R) y el error cuadrático medio (MSE) y predijeron la MDD con R=0,90, OMC con R=0,87, CBR al 95% con R=0,92, CBR al 100% con R=0,89, respectivamente, demostrando que los modelos son eficientes para predecir las propiedades del suelo.
Descargas
Referencias
V. Y. Katte, S. M. Mfoyet, B. Manefouet, A. S. L. Wouatong, and L. A. Bezeng, “Correlation of California Bearing Ratio (CBR) Value with Soil Properties of Road Subgrade Soil,” Geotech. Geol. Eng., vol. 37, no. 1, pp. 217–234, Jan. 2019, doi: 10.1007/s10706-018-0604-x.
Instituto Nacional de Estadística e Informática, “Informe Técnico N° 03 -Indicador de la Actividad Productiva Departamental: Segundo Trimestre 2020,” 2020. [Online]. Available: https://www.inei.gob.pe/biblioteca-virtual/boletines/produccion-nacional-departamenal-9836/1/.
B M. Das and N. Sivakugan, Principles of Foundation Engineering, 9th ed. USA: Cengage Learning, 2019.
A. Özyankı, “Soil classification by using artificial neural networks,” Master’s thesis, Near East University, Nicosi, 2019.
A. Carrillo gil, “Comportamiento del suelo tropical peruano,” Perfiles Ing., vol. 12, no. 12, pp. 27–35, Aug. 2017, doi: 10.31381/perfiles_ingenieria.v12i12.809.
A. Raad Al-Adhadh, H. Kadhem Sakban, and Z. Tawfiq Naeem, “Effect of Method of Soil Drying On Atterberg Limits and Soil Classification,” IOP Conf. Ser. Mater. Sci. Eng., vol. 739, no. 1, Feb. 2020, doi: 10.1088/1757-899X/739/1/012044.
B. Zhou and N. Lu, “Correlation between Atterberg Limits and Soil Adsorptive Water,” J. Geotech. Geoenvironmental Eng., vol. 147, no. 2, Feb. 2021, doi: 10.1061/(ASCE)GT.1943-5606.0002463.
S. Al-Busultan, G. K. Aswed, R. R. A. Almuhanna, and S. E. Rasheed, “Application of Artificial Neural Networks in Predicting Subbase CBR Values Using Soil Indices Data,” in IOP Conference Series: Materials Science and Engineering, Jan. 2020, vol. 671, no. 1, doi: 10.1088/1757-899X/671/1/012106.
E. A. Sandoval Vallejo y W. A. Rivera Mena, “Correlación del CBR con la resistencia a la compresión inconfnada”, Cienc. e Ing. Neogranadina, vol. 29, no. 1, pp. 135–152, Aug. 2019, doi: 10.18359/rcin.3478.
G. Verma and B. Kumar, “Prediction of compaction parameters for fine-grained and coarse-grained soils: a review,” Int. J. Geotech. Eng., vol. 14, no. 8, pp. 970–977, Nov. 2020, doi: 10.1080/19386362.2019.1595301.
Ministerio de Transportes y Comunicaciones, “Manual de ensayo de materiales”. Perú, 2016. Disponible en: https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manuales.html.
T. Li, L. Kong, and B. Liu, “The California Bearing Ratio and Pore Structure Characteristics of Weakly Expansive Soil in Frozen Areas,” Appl. Sci., vol. 10, no. 21, pp. 1–22, Oct. 2020, doi: 10.3390/app10217576.
X. Ji et al., “A Prediction Method for the California Bearing Ratio of Soil-Rock Mixture Based on the Discrete Element Method and CT Scanning,” Adv. Civ. Eng., vol. 2020, pp. 1–12, Sep. 2020, doi: 10.1155/2020/9794756.
R. Nini, “Effect of Soaking Period of Clay on its California Bearing Ratio Value,” in The 4th World Congress on Civil, Structural, and Environmental Engineering, Apr. 2019, doi: 10.11159/icgre19.162.
E. Mina, R. I. Kusuma, and N. Ulfah, “Utilization of steel slag and fly ash in soil stabilization and their effect to california bearing ratio (CBR) value. (Case study: Kp. Kadusentar road Medong village Mekarjaya Subdistrict Pandeglang District),” in IOP Conference Series: Materials Science and Engineering, Dec. 2019, vol. 673, no. 1, doi: 10.1088/1757-899X/673/1/012034.
Z. U. Rehman, U. Khalid, K. Farooq, and H. Mujtaba, “Prediction of CBR value from index properties of different soils,” Tech. J. Univ. Eng. Technol. Taxila, Pakistan, vol. 22, no. 2, 2017.
Universidad Nacional de Ingeniería, “Tarifa de ensayos de laboratorio”, Lima, 2019. [En línea]. Disponible en: http://www.lms.uni.edu.pe/labsuelos/tarifa/tarifa general 2019.pdf.
G. O. Bogado, N. A. Pintos, H. O. Reinert, and D. A. Bressan, “Correlación entre parámetros de compactación y propiedades geotécnicas en suelos tropicales misioneros,” Rev. Geol. Apl. a la Ing. y al Ambient., vol. 39, pp. 19–26, 2017.
Ministerio de Transportes y Comunicaciones, “Manual de carreteras - Suelos, Geología, Geotécnia y Pavimentos. Sección: Suelos y Pavimentos”. Perú, 2014.
E. Özgan, S. Serin, and İ. Vural, “Multi-faceted investigation and modeling of compaction parameters for road construction,” J. Terramechanics, vol. 60, pp. 33–42, Aug. 2015, doi: 10.1016/j.jterra.2015.02.005.
O. Vafoeva, “Hydromechanical Method of Soil Compaction,” in IOP Conference Series: Materials Science and Engineering, Jul. 2020, vol. 883, no. 1, doi: 10.1088/1757-899X/883/1/012061.
J. C. Chirinos Quispe, “Efecto de la energía de compactación en la densidad seca máxima y contenido óptimo de humedad del suelo granular de la cantera El Gavilán, 2015”, Tesis de licenciatura, Universidad Privada del Norte, 2016.
E. Millan-Romero and C. Millan-Paramo, “Relationship of water parameters with the optimum moisture content in clay soils,” ARPN J. Eng. Appl. Sci., vol. 15, no. 15, pp. 1666–1671, 2020.
A. R. Tenpe and A. Patel, “Application of genetic expression programming and artificial neural network for prediction of CBR,” Road Mater. Pavement Des., vol. 21, no. 5, pp. 1183–1200, Jul. 2020, doi: 10.1080/14680629.2018.1544924.
S. K. Alam, A. Mondal, and A. Shiuly, “Prediction of CBR Value of Fine Grained Soils of Bengal Basin by Genetic Expression Programming, Artificial Neural Network and Krigging Method,” J. Geol. Soc. India, vol. 95, no. 2, pp. 190–196, Feb. 2020, doi: 10.1007/s12594-020-1409-0.
A. Ardakani and A. Kordnaeij, “Soil compaction parameters prediction using GMDH -type neural network and genetic algorithm,” Eur. J. Environ. Civ. Eng., vol. 23, no. 4, pp. 449–462, Apr. 2019, doi: 10.1080/19648189.2017.1304269.
B. S. Albusoda, D. A. Al-Hamdani, and M. F. Abbas, “Dry Density Based on Soil Index Properties by Using Expert System,” Key Eng. Mater., vol. 857, pp. 266–272, Aug. 2020, doi: 10.4028/www.scientific.net/KEM.857.266.
C. Rajakumar and G. Reddy Babu, “Experimental study and neural network modelling of expansive sub grade stabilized with industrial waste by-products and geogrid,” Mater. Today Proc., Aug. 2020, doi: 10.1016/j.matpr.2020.06.578.
T. Fikret Kurnaz and Y. Kaya, “Prediction of the California bearing ratio (CBR) of compacted soils by using GMDH-type neural network,” Eur. Phys. J. Plus, vol. 134, no. 7, Jul. 2019, doi: 10.1140/epjp/i2019-12692-0.
A. Ghorbani and H. Hasanzadehshooiili, “Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing,” Soils Found., vol. 58, no. 1, pp. 34–49, Feb. 2018, doi: 10.1016/j.sandf.2017.11.002.
Y. Erzin and D. Turkoz, “Use of neural networks for the prediction of the CBR value of some Aegean sands,” Neural Comput. Appl., vol. 27, no. 5, pp. 1415–1426, Jul. 2016, doi: 10.1007/s00521-015-1943-7.
M. Suthar and P. Aggarwal, “Predicting CBR Value of Stabilized Pond Ash with Lime and Lime Sludge Using ANN and MR Models,” Int. J. Geosynth. Gr. Eng., vol. 4, no. 1, p. 6, Mar. 2018, doi: 10.1007/s40891-017-0125-3.
F. J. Valderrama Purizaca, D. A. Chávez Barturen, S. P. Muñoz Pérez, V. A. Tuesta-Monteza, and H. I. Mejía-Cabrera, “Importance of artificial neural networks in civil engineering: a systematic review of the literature,” ITECKNE, vol. 18, no. 1, 2020, doi: 10.15332/iteckne.v18i1.2542.
S. Khuntia, H. Mujtaba, C. Patra, K. Farooq, N. Sivakugan, and B. M. Das, “Prediction of compaction parameters of coarse grained soil using multivariate adaptive regression splines (MARS),” Int. J. Geotech. Eng., vol. 9, no. 1, pp. 79–88, Feb. 2015, doi: 10.1179/1939787914Y.0000000061.
U. Khalid and Z. ur Rehman, “Evaluation of compaction parameters of fine-grained soils using standard and modified efforts,” Int. J. Geo-Engineering, vol. 9, no. 1, Art. no. 15, Dec. 2018, doi: 10.1186/s40703-018-0083-1.
I. Taleb Bahmed, K. Harichane, M. Ghrici, B. Boukhatem, R. Rebouh, and H. Gadouri, “Prediction of geotechnical properties of clayey soils stabilised with lime using artificial neural networks (ANNs),” Int. J. Geotech. Eng., vol. 13, no. 2, pp. 191–203, Mar. 2019, doi: 10.1080/19386362.2017.1329966.
P. Tizpa, R. Jamshidi Chenari, M. Karimpour Fard, and S. Lemos Machado, “ANN prediction of some geotechnical properties of soil from their index parameters,” Arab. J. Geosci., vol. 8, no. 5, pp. 2911–2920, May 2015, doi: 10.1007/s12517-014-1304-3.
S. Shanmuganathan, “Artificial Neural Network Modelling: An Introduction,” in Studies in Computational Intelligence, vol. 628, Springer Verlag, 2016, pp. 1–14.
F. Ecer, S. Ardabili, S. S. Band, and A. Mosavi, “Training Multilayer Perceptron with Genetic Algorithms and Particle Swarm Optimization for Modeling Stock Price Index Prediction,” Entropy, vol. 22, no. 11, Art. no. 1239, Oct. 2020, doi: 10.3390/e22111239.
A. Jassam Mohammed, M. Hameed Arif, and A. Adil Ali, “A multilayer perceptron artificial neural network approach for improving the accuracy of intrusion detection systems,” IAES Int. J. Artif. Intell., vol. 9, no. 4, pp. 609–615, Dec. 2020, doi: 10.11591/ijai.v9.i4.pp609-615.
K. Ncibi, T. Sadraoui, M. Faycel, and A. Djenina, “A Multilayer Perceptron Artificial Neural Networks Based a Preprocessing and Hybrid Optimization Task for Data Mining and Classification,” Int. J. Econom. Financ. Manag. Vol. 5, 2017, Pages 12-21, vol. 5, no. 1, 2017, doi: 10.12691/ijefm-5-1-3.
S. Saha, G. C. Paul, B. Pradhan, K. N. Abdul Maulud, and A. M. Alamri, “Integrating multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability assessment in Eastern India,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 29–62, Jan. 2021, doi: 10.1080/19475705.2020.1860139.
A. Escamilla-García, G. M. Soto-Zarazúa, M. Toledano-Ayala, E. Rivas-Araiza, and A. Gastélum-Barrios, “Applications of Artificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development,” Appl. Sci., vol. 10, no. 11, Art. no. 3835, May 2020, doi: 10.3390/app10113835.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. 2016.
Sistema Electrónico de Contrataciones del Estado, “Buscador público.” https://prodapp2.seace.gob.pe/seacebus-uiwd-pub/buscadorPublico/buscadorPublico.xhtml.
J. Casas Roma, A. Bosch Rue, and T. Lozano Bagen, Deep learning: principios y fundamentos. Editorial UOC, 2019.
M. Manrique Dávila, “Predicción de propiedades mecánicas de suelos utilizando redes neuronales artificiales,” Tesis de grado, Universidad Continental, Huancayo, 2019.
L. C. P. Velasco, R. P., M. Shahin, B. F., and J. C., “Performance Analysis of Multilayer Perceptron Neural Network Models in Week-Ahead Rainfall Forecasting,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 3, pp. 578–588, 2019, doi: 10.14569/IJACSA.2019.0100374.
François Chollet, Deep Learning with Python. Shelter Island, NY: Manning Publications, 2017.
G. Singh and A. K. Singh, “A study on precursors leading to geomagnetic storms using artificial neural network,” J. Earth Syst. Sci., vol. 125, no. 5, pp. 899–908, Jul. 2016, doi: 10.1007/s12040-016-0702-1.
A. C. Müller and S. Guido, Introduction to machine learning with Python: a guide for data scientists. O’Reilly Media, Inc., 2016.
L. C. P. Velasco, C. R. Villezas, P. N. C. Palahang, and J. A. A. Dagaang, “Next day electric load forecasting using Artificial Neural Networks,” in 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Dec. 2015, pp. 1–6, doi: 10.1109/HNICEM.2015.7393166.
L. C. P. Velasco, D. Lou, G. Paolo, M. Bryan, and F. B., “Load Forecasting using Autoregressive Integrated Moving Average and Artificial Neural Network,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 7, pp. 23–29, 2018, doi: 10.14569/IJACSA.2018.090704.
C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research for Deep Learning,” Nov. 2018. Disponible en: http://arxiv.org/abs/1811.03378.
P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,” Oct. 2017. Available: http://arxiv.org/abs/1710.05941.
T. Szandała, “Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks,” in Studies in Computational Intelligence, vol. 903, 2021, pp. 203–224.
Y. Wang, Y. Li, Y. Song, and X. Rong, “The Influence of the Activation Function in a Convolution Neural Network Model of Facial Expression Recognition,” Appl. Sci., vol. 10, no. 5, Art. no. 1897, Mar. 2020, doi: 10.3390/app10051897.
L. B. Godfrey and M. S. Gashler, “A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks,” in IC3K 2015 - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, 2015, vol. 1, pp. 481–486, doi: 10.5220/0005635804810486.
S. Sharma, S. Sharma, and A. Athaiya, “Activation Functions in Neural Networks,” Int. J. Eng. Appl. Sci. Technol., vol. 04, no. 12, pp. 310–316, May 2020, doi: 10.33564/IJEAST.2020.v04i12.054.
V. Vijayashanthar, J. Qiao, Z. Zhu, P. Entwistle, and G. Yu, “Modeling Fecal Indicator Bacteria in Urban Waterways Using Artificial Neural Networks,” J. Environ. Eng., vol. 144, no. 6, Art. no. 05018003, Jun. 2018, doi: 10.1061/(ASCE)EE.1943-7870.0001377.
S. Lathuiliere, P. Mesejo, X. Alameda-Pineda, and R. Horaud, “A Comprehensive Analysis of Deep Regression,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 9, pp. 2065–2081, Sep. 2020, doi: 10.1109/TPAMI.2019.2910523.
C. Pack, S. Shin, H.-D. Choi, S.-I. Jeon, and J. Kim, “Optimized multilayer perceptron using dynamic learning rate based microwave tomography breast cancer screening,” in Proceedings of the 31st Annual ACM Symposium on Applied Computing, Apr. 2016, vol. 04-08-Apri, pp. 2171–2175, doi: 10.1145/2851613.2851825.
Y. Wang, J. Liu, J. Misic, V. B. Misic, S. Lv, and X. Chang, “Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples,” IEEE Access, vol. 7, pp. 152766–152776, 2019, doi: 10.1109/ACCESS.2019.2948658.
D. Yi, J. Ahn, and S. Ji, “An Effective Optimization Method for Machine Learning Based on ADAM,” Appl. Sci., vol. 10, no. 3, Art. no. 1073, Feb. 2020, doi: 10.3390/app10031073.
Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert, “Deep learning-based electroencephalography analysis: a systematic review,” J. Neural Eng., vol. 16, no. 5, Art. no. 051001, Aug. 2019, doi: 10.1088/1741-2552/ab260c.
M. A. Amirabadi, M. H. Kahaei, and S. A. Nezamalhosseini, “Novel suboptimal approaches for hyperparameter tuning of deep neural network [under the shelf of optical communication],” Phys. Commun., vol. 41, Art. no. 101057, Aug. 2020, doi: 10.1016/j.phycom.2020.101057.
G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz, “An effective algorithm for hyperparameter optimization of neural networks,” IBM J. Res. Dev., vol. 61, no. 4/5, Jul. 2017, doi: 10.1147/JRD.2017.2709578.
M. Kim, “Supervised learning‐based DDoS attacks detection: Tuning hyperparameters,” ETRI J., vol. 41, no. 5, pp. 560–573, Oct. 2019, doi: 10.4218/etrij.2019-0156.
S. Yildirim, “Improving word embeddings projection for Turkish hypernym extraction,” Turkish J. Electr. Eng. Comput. Sci., vol. 27, no. 6, pp. 4418–4428, Nov. 2019, doi: 10.3906/elk-1903-65.
A. Dinamarca, “Aprendizaje y Análisis de Redes Neuronales Artificiales Profundas,” Tesina de grado, Universidad Nacional de Cuyo, 2018.
L. Balles, J. Romero, and P. Hennig, “Coupling adaptive batch sizes with learning rates,” Dec. 2017. Available: http://arxiv.org/abs/1612.05086.
X. Wei, L. Zhang, H.-Q. Yang, L. Zhang, and Y.-P. Yao, “Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks,” Geosci. Front., vol. 12, no. 1, pp. 453–467, 2021, doi: 10.1016/j.gsf.2020.04.011.
J. Koo, J. Zhang, and S. Chaterji, “Tiresias: Context-sensitive approach to decipher the presence and strength of microRNA regulatory interactions,” Theranostics, vol. 8, no. 1, 2018, doi: 10.7150/thno.22065.
E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning,” Rl, Dec. 2010, [Online]. Available: http://arxiv.org/abs/1012.2599.
R. Hernández-Sampieri and C. P. Mendoza Torres, Metodología de la investigación: las rutas cuantitativas, cualitativa y mixta, 1a ed. McGraw Hill, 2018.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Lámpsakos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
De conformidad con las normas nacionales e internacionales sobre derechos de autor, las políticas de publicación de la Universidad Católica Luis Amigó y de la revista Lámpsakos (indexada con ISSN: 2145-4086), yo(nosotros), manifiesto(amos):
1. El deseo de participar como articulista(s) y someter a las normas editoriales establecidas por la revista (nombre la revista) el artículo titulado (nombre del artículo),
2. El compromiso de no retirar el artículo hasta no terminar el proceso de edición del número de la revista en curso.
3. Que el artículo es original e inédito y no ha sido postulado o presentado conjuntamente en otra(s) revista(s); por tanto, los derechos del artículo en cuestión no han sido cedidos con antelación y sobre ellos no pesa ningún gravamen ni limitación en su uso o utilización.
4. La inexistencia de conflicto de interés con institución o asociación comercial de cualquier índole.
5. Haber incorporado las citas y referencias de otros autores, tendientes a evitar el plagio. En consecuencia, afirmo que de ser publicado el artículo, no se violarán derechos de autor, de propiedad intelectual o de privacidad de terceros. Así mismo, de ser necesario, existe forma de evidenciar los permisos respectivos sobre derechos de autor originales para los aspectos o elementos extraídos de otros documentos como textos de más de 500 palabras, tablas, gráficas, entre otros. En caso de presentarse cualquier tipo de reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre el artículo, el(los) autor(es) asumirán toda la responsabilidad, y saldrán en defensa de los derechos aquí cedidos. Por tanto, para todos los efectos, la revista Lámpsakos de la Fundación Universitaria Luis Amigó actúa como un tercero de buena fe.
6. Que en el evento de publicarse el artículo, cedo(emos) a título gratuito y con carácter de exclusividad la integridad de los derechos patrimoniales así como los derechos de impresión, reimpresión y de reproducción por cualquier forma y medio, sin ninguna limitación en cuanto a territorio se refiere, en favor de la revista Lámpsakos de la Universidad Católica Luis Amigó.
7. Reconocer como coautores y/o colaboradores, a todos quienes participaron en ese rol y no se ha omitido a ninguno.