Interfaz Cerebro Computador Basado en Señales EEG para el Control de Movimiento de una Prótesis de Mano Usando ANFIS

Autores/as

  • Alexandra Bedoya-Rojas Estudiante de Ingeniería Biomédica, Instituto Tecnológico Metropolitano, Grupo de Investigación GI2B, Medellín-Colombia
  • Jessica Giraldo-Leiva Estudiante de Ingeniería Biomédica, Instituto Tecnológico Metropolitano, Grupo de Investigación GI2B, Medellín-Colombia
  • Íngrid Durley Torres-Pardo Docente-Investigadora Insitución Salazar y Herrera
  • Miguel Albero Becerra-Botero Magister en Automatización y Control Industrial, Docente Investigador, Institución Universitaria Salazar y Herrera, Grupo de Investigación GEA, Medellín-Colombia

DOI:

https://doi.org/10.21501/21454086.1053

Palabras clave:

Interfaz Cerebro Computador (BCI), Señales Electroencefalográficas (EEG), Sistema de Inferencia Neuro-difuso adaptativo (ANFIS), Transformada Wavelet (WT),

Resumen

Actualmente, existe un gran número de personas en el mundo que presentan amputación de miembros que son reemplazados usualmente por prótesis mecánicas. Por otro lado las prótesis electrómecanicas han venido tomando fuerza y son apoyadas por diferentes tipos de interfaces como las interfaces cerebro computador que han permitido mejorar la funcionalidad de estas, y a pesar de mostrar resultados representativos para el control de prótesis, aun es un campo abierto de investigación que busca mejorar su eficacia y eficiencia. En este estudio, se presenta una metodología de clasificación de señales electroencefalográficas (EEG) para el control del movimiento de una prótesis de mano, basada en el sistema de inferencia neuro-difuso adaptativo (ANFIS) aplicado a características obtenidas de la transformada wavelet (TW) y los conjuntos difusos rough (FRS) a señales EEG obtenidas en el sistema 10-10. De esta forma el rendimiento del sistema propuesto fue medido utilizando validación cruzada 70-30 con 30 repeticiones obteniendo un alto desempeño en términos de precisión, lo que significa que este modelo tiene potencial como clasificador en la detección de los cambios EEG para la generación de comandos para el control del movimiento de la mano

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Íngrid Durley Torres-Pardo, Docente-Investigadora Insitución Salazar y Herrera

Ingrid-Durley Torres received her Ms.C. degree from the Faculty of system engineering, Universidad Nacional de Colombia, Medellin Campus.  Where actually is Ph.D Student and working as teacher research at Institución Salazar y Herrera from Medellin, Colombia. Her topic investigation are Artificial Intelligence (planning, semantic web, e-learning).

Referencias

Dobkin B. H. “Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation”, The Journal of Physiology, no. 579, pp. 637–642, 2007.

Organización Mundial de la Salud, Resumen Informe sobre la Discapacidad, Organización Mundial de la Salud y Banco Mundial, Resumen Informe Mundial sobre la Discapacidad, 2011, 17 de Agosto de 2013. , http://www.who.int/disabilities/world_report/2011/summary_es.pdf

Jiang N., Dosen S., Müller K. R., Farina D., “Myoelectric Control of Artificial Limbs- ¿Is There a Need to Change Focus?” IEEE signal processing, pp. 152-150, September 2012.

Kousarrizi M. R. N., Ghanbari A. A., Teshnehlab M., Aliyari M., .Gharaviri A., “Feature Extraction and Classification of EEG Signals using Wavelet Transform, SVM and Artificial Neural Networks for Brain Computer Interfaces”. IEEE, pp. 352-355, August 2009.

Übeyli E. and Güler I. “Adaptative Neuro-Fuzzy Inference System for Classification of EEG Signals Using Wavelet Coefficients”, Journal of Neuroscience Methods, pp. 113–121, April 2005.

Hsu W., “Embedded prediction in feature extraction: application to single-trial EEG discrimination.” Clinical EEG Neuroscience Official Journal of EEG and Clinical Neuroscience Society, vol. 44, no. 1, pp. 31-38, January 2012.

Übeyly E. D., “Automatic detection of electroencephalographic changes using adaptive neuro-fuzzy inference system employing Lyapunov exponents.” Expert Systems With Applications, vol.36, Issue 5, pp. 9031-9038, July 2009.

Odeh S., Hodali J., Sleibi M., and Ilyaa S., “Cursor Movement Control Development by Using ANFIS Algorithm”. The International Arab Journal of Information Technology, pp. 448-453, June 2009.

Yidiz A., Poyraz M., Kirbaz G., and Akin M., “Application of adaptative neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy feature extraction”. Expert systems whit applications, vol. 36, Issue 4, pp. 7390-7399, May 2009.

Übeyli E., Cvetkovic D., Holland G., and Cosic I., “Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of alterations in sleep EEG activity during hypopnoea episodes.” Digital Signal Processing, vol. 20, Issue 3, pp. 678–691, May 2010.

Goldberger A., Amaral L., Glass L., Hausdorff J., Ivanov P., Mark R., Mietus J., Moody G., and Peng C.-K., “Components of a New Research Resource for Complex Physiologic Signals”. Circulation Electronic Pages, pp. 215-220, 2000.

Schalk G., McFarland D., Hinterberger T., Wolpaw J., and Birbaumer N., “BCI2000: A GeneralPurpose Brain-Computer Interface (BCI) System.” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1034-1043, June 2004.

Güler I., and Ubeyli E., “Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction”. Expert Systems with Applications, pp. 323–330, 2004.

J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, May 1993.

M. Becerra, “Metodología dinámica sobre espacios de representación abstracta basada en técnicas estocásticas orientada a la detección de soplos cardiacos a partir de los cuatro focos de auscultación,” Tesis de Maestría, Maestría en Automatización y Control Industrial, Institución Universitaria Instituto Tecnológico Metropolitano, 2013.

Orrego D. A., Becerra M. A., and Delgado Trejos E. “Dimensionality reduction based on fuzzy rough sets oriented to ischemia detection,” in 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, California, USA pp. 2012, pp. 5282 –5285.

Lu P, Yuan D, Lou Y, Liu C, and Huang S. “SingleTrial Identification of Motor Imagery EEG based on HHT and SVM.” Lecture Notes in Electrical Engineering, vol. 256, pp. 681-689, 2013.

Pérez J. L. M., and Cruz A. B., “Adaptive RBF-HMM BiStage Classifier Applied to Brain Computer Interface.” Comunications in Computer and Information Science, vol. 127, pp. 152–65, 2011.

Descargas

Publicado

06/29/2013

Cómo citar

Bedoya-Rojas, A., Giraldo-Leiva, J., Torres-Pardo, Íngrid D., & Becerra-Botero, M. A. (2013). Interfaz Cerebro Computador Basado en Señales EEG para el Control de Movimiento de una Prótesis de Mano Usando ANFIS. Lámpsakos (revista Descontinuada), (10), 59–64. https://doi.org/10.21501/21454086.1053

Número

Sección

Artículos Reflexión Analítica e Interpretativa